HOW TO CRACK GAT-B,
Pattern | Eligibility | Syllabus for GAT-B
Exam pattern
The examination will be conducted in a single shift for a duration of 180 minutes. The question paper will have two parts:
PART- A:
• Part A will have 60 compulsory multiple choice questions of the level of 10+2 in the subjects: Physics, Chemistry, Mathematics and Biology.
• Each correct answer will be of one mark each.
• There will be negative marking and for each wrong answer, ½ (half) mark will be deducted.
PART-B:
• Part B will have multiple choice questions of bachelor’s level requiring thinking and analysis.
• There will be questions from basic Biology, Life Sciences, Biotechnology and allied areas as per syllabus given.
• There will be 100 questions out of which the candidates will have to attempt 60 questions.
• Each correct answer will have a weightage of 3 marks.
• There will be negative marking and for each wrong answer one mark will be deducted
PART-A SYLLABUS
Prepare 10+2 level in the subjects: Physics, Chemistry, Mathematics and Biology.
PART-B SYLLABUS
BIOCHEMISTRY
Biomolecules-structure and functions; Biological membranes, structure, action potential and transport processes; Enzymes- classification, kinetics and mechanism of action; Basic concepts and designs of metabolism (carbohydrates, lipids, amino acids and nucleic acids) photosynthesis, respiration and electron transport chain; Bioenergetics.
MICROBIOLOGY
Viruses- structure and classification; Microbial classification and diversity(bacterial, algal and fungal); Methods in microbiology; Microbial growth and nutrition; Aerobic and anaerobic respiration; Nitrogen fixation; Microbial diseases and host-pathogen interaction.
CELL BIOLOGY
Prokaryotic and eukaryotic cell structure; Cell cycle and cell growth control; Cell-Cell communication, Cell signaling and signal transduction.
MOLECUALR GENETICS
Molecular structure of genes and chromosomes; Mutations and mutagenesis; Nucleic acid replication, transcription, translation and their regulatory mechanisms in prokaryotes and eukaryotes; Mendelian inheritance; Gene interaction; Complementation; Linkage, recombination and chromosome mapping; Extra chromosomal inheritance; Microbial genetics (plasmids, transformation, transduction, conjugation); Horizontal gene transfer and Transposable elements; RNA interference; DNA damage and repair; Chromosomal variation; Molecular basis of genetic diseases.
TOOLS AND TECHNIQUES
Principles of microscopy-light, electron, fluorescent and confocal; Centrifugation- high speed and ultra; Principles of spectroscopy-UV, visible, CD, IR, FTIR, Raman, MS,NMR; Principles of chromatography- ion exchange, gel filtration, hydrophobic interaction, affinity, GC,HPLC, FPLC; Electrophoresis; Microarray.
IMMUNOLOGY
History of Immunology; Innate, humoral and cell mediated immunity; Antigen; Antibody structure and function; Molecular basis of antibody diversity; Synthesis of antibody and secretion; Antigen-antibody reaction; Complement; Primary and secondary lymphoid organ; B and T cells and macrophages; Major histocompatibility complex (MHC); Antigen processing and presentation; Polyclonal and monoclonal antibody; Regulation of immune response; Immune tolerance; Hypersensitivity; Autoimmunity; Graft versus host reaction.
Major bioinformatics resources and search tools; Sequence and structure databases; Sequence analysis (biomolecular sequence file formats, scoring matrices, sequence alignment, phylogeny); Data mining and analytical tools for genomic and proteomic studies; Molecular dynamics and simulations (basic concepts including force fields, protein-protein, protein-nucleic acid, protein- ligand interaction)
RDT
Restriction and modification enzymes; Vectors; plasmid, bacteriophage and other viral vectors, cosmids, Ti plasmid, yeast artificial chromosome; mammalian and plant expression vectors; cDNA and genomic DNA library; Gene isolation, cloning and expression ; Transposons and gene targeting; DNA labeling; DNA sequencing; Polymerase chain reactions; DNA fingerprinting; Southern and northern blotting; In- situ hybridization; RAPD, RFLP; Site-directed mutagenesis; Gene transfer technologies; Gene therapy.
PLANT BIOTECH
Totipotency; Regeneration of plants; Plant growth regulators and elicitors; Tissue culture and Cell suspension culture system: methodology, kinetics of growth and, nutrient optimization; Production of secondary metabolites by plant suspension cultures; Hairy root culture; transgenic plants; Plant products of industrial importance.
ANIMAL BIOTECH
Animal cell culture; media composition and growth conditions; Animal cell and tissue preservation; Anchorage and non-anchorage dependent cell culture; Kinetics of cell growth; Micro & macro-carrier culture; Hybridoma technology; Stem cell technology; Animal cloning; Transgenic animals.
CHEMICAL ENGINEERING PRINCIPLES applied to biological system, Principle of reactor design, ideal and non- ideal multiphase bioreactors, mass and heat transfer; Rheology of fermentation fluids, Aeration and agitation; Media formulation and optimization; Kinetics of microbial growth, substrate utilization and product formation; Sterilization of air and media; Batch, fed-batch and continuous processes; Various types of microbial and enzyme reactors; Instrumentation control and optimization; Unit operations in solid-liquid separation and liquid-liquid extraction; Process scale-up, economics and feasibility analysis.
ENGINEERING PRINCIPLE OF BIOPROCESSING – Upstream production and downstream; Bioprocess design and development from lab to industrial scale; Microbial, animal and plant cell culture platforms; Production of biomass and primary/secondary metabolites; Biofuels, Bioplastics, industrial enzymes, antibiotics; Large scale production and purification of recombinant proteins; Industrial application of chromatographic and membrane based bio-separation methods; Immobilization of biocatalysts (enzymes and cells) for bioconversion processes; Bioremediation-Aerobic and anaerobic processes for stabilization of solid / liquid wastes.
Plant Tissue culture and its application, Micropropagation. Meristem culture and production of virus-free plants. Anther and microspore culture. Embryo and ovary culture. Protoplast isolation. Protoplast fusion-somatic hybrids, cybrids. Somaclones. Synthetic seeds. In vitro germplasm conservation. Cryopreservation. Organelle DNA, Satellite-and repetitive DNAs. DNA repair. Regulation of gene expression. Recombinant DNA technology-cloning vectors, restriction enzymes, gene cloning. Methods of gene transfer in plants. Achievements and recent developments of genetic engineering in agriculture. Development of transgenics for biotic & abiotic stress tolerance, bioethics, terminator technology, nanotechnology, DNA fingerprinting, gene silencing.